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We consider a one-dimensional structure obtained by stringing two types of 
"beads" (short and long bonds) on a line according to a quasiperiodic rule. This 
model exhibits a new kind of order, intermediate between quasiperiodic and 
random, with a singular continuous Fourier transform (i.e., neither Dirac peaks 
nor a smooth structure factor). By means of an exact renormalization transfor- 
mation acting on the two-parameter family of circle maps that defines the 
model, we study in a quantitative way the local scaling properties of its Fourier 
spectrum. We show that it exhibits power-law singularities around a dense set of 
wavevectors q, with a local exponent 7(q) varying continuously with the ratio of 
both bond lengths. Our construction also sheds some new light on the interplay 
between three characteristic properties of deterministic structures, namely: (1) a 
bounded fluctuation of the atomic positions with respect to their average lattice; 
(2) a quasiperiodic Fourier transform, i.e., made of Dirac peaks; and (3) for 
sequences generated by a substitution, the number-theoretic properties of the 
eigenvalue spectrum of the substitution. 

KEY WORDS: Quasiperiodicity; inflation rules; circle maps; self-similarity. 

1. I N T R O D U C T I O N  

The aim of this paper is to analyze in detail the scaling properties of a one- 
dimensional geometrical structure, already considered in a recent work. (~) 
This structure is obtained by stringing two types of "beads" (short and long 
bonds) on a line, according to a quasiperiodic rule. We argued, using 
numerical evidence, that the diffraction spectrum of this structure is 
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singular continuous. This means that its Fourier amplitude is neither 
discrete (Dirac peaks), as for periodic or quasiperiodic structures, nor 
absolutely continuous (smooth), as for the averaged structure factor of ran- 
dom structures. This type of order is therefore intermediate between 
quasiperiodic and random. 

The possible existence of structures with such an intermediate kind of 
order already has been investigated. (2-6) In particular, Aubry (2) introduced 
the concept of "weak periodicity," a general property of classical ground 
states of translationally invariant short-range Hamiltonians. This concept 
describes a kind of deterministic order, which does not necessarily imply 
periodicity or quasiperiodicity. Hence, it includes a rich collection of looser 
and looser "ordered" structures. Number theory seems to play an impor- 
tant role in this field. 

The present study concerns only geometrical characteristics of the 
model introduced in ref. 1, with emphasis on its scaling properties and 
their consequences for its Fourier spectrum. In Section 2, we recall the 
geometrical construction of the structure, as well as some of its basic 
properties. In Section 3, we introduce an exact renormalization transform 
acting on the two parameters ~ and A of the circle map involved in the 
model. This procedure leads to inflation rules on the binary sequence of 
short and long bonds defining the structure. These rules are best described 
by a substitution acting on three "letters." A similar approach was already 
introduced in ref. 6 for a particular case (A = 1/2), where another type of 
renormalization transform was defined. The transform considered hereafter 
uses the approximation of A by multiples of ~ modulo 1, which is described 
in Appendix A. In Section 4, this transform is used to find the local (i.e., for 
fixed wavevector q) scaling behavior of the Fourier amplitude of the 
structure. The computation is performed in detail for a specific example, 
already considered in refs. 1 and 6, corresponding to the fixed point 
(~=~-2, A=1/2) of the renormalization transform. Here and in the 
following, 

= (x/5+ 1)/2 (1.1) 

denotes the golden mean. Our approach is akin to that of Bombieri and 
Taylor. (7) According to the classification of these authors, the present case 
is marginal, since the modulus of the second largest eigenvalue of the sub- 
stitution matrix is 1. We give the analytical expression of the local scaling 
exponent 7(q) of the Fourier amplitude for q belonging to some module, to 
be-defined later. The self-similarity of the Fourier spectrum is also 
illustrated by a graphical representation in the complex plane. Section 5 is 
devoted to a discussion, where the rather technical results of the previous 
sections are placed in a general context. 



Scaling Properties of an In termediate  St ruc ture  1035 

2. THE M O D E L  

Let us recall briefly the construction of the model considered in ref. 1. 
The structure is defined by putting atoms on a line, the abscissa of the nth 
atom being given by 

u n - u , _  1 =/~; Uo=0 (2.1) 

The bond lengths l, are chosen according to a quasiperiodic rule, namely 
the action of a "window" function of width A on the sequence (n~ mod 1), 
where ff (irrational) and A are given numbers between 0 and 1. The ~ was 
denoted l in refs. 1 and 4-6. We have 

In = 1 + ~Z~ (2.2) 

where the binary sequence 

Zn = )f~(n~) (2.3) 

is quasiperiodic, since Z~(x) is a 1-periodic function defined by 

{ ;  if0~< Frac(x)<  A~ 
g ~ ( x ) = I n t ( x ) - I n t ( x - A ) =  i ra  ~< Frac(x) < l J  (2.4) 

Here Int(x) and F r a c ( x ) = x - I n t ( x )  denote the integer and fractional 
parts of x, respectively. It is easily seen that this sequence may also be 
generated by a circle map, as shown on Fig. 1. The third dimensionless 
parameter ~ > - 1 is the difference between the lengths, 1 and 1 + 4, of both 
types of bonds. The interatomic mean distance (inverse density) of the 
model is 

a =  lim --=un I + ~ A  (2.5) 
/ / ~ o o  n 

The "fluctuation" 

6~ = un - na (2.6) 

of the atomic abscissas with respect to their average lattice (na) remains 
bounded with increasing n if, and only if, the window width zl is a multiple 
of the rotation angle ~ rood 1, i.e., 

A = Ar = Frac(r~), (2.7) 

for some integer r. (8'9) This condition is hereafter called the "Kesten 
condition." This result of number theory implies the absence of an average 
lattice when A does not fulfill the Kesten condition. 

822/51/5-6-20 
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The binary sequence (~(.) can be generated by a circle map. 

As noted in the introduction, we already studied, mainly by numerical 
means, the implications of these considerations for the Fourier spectrum of 
the structure. We will come back to this question in Section 3, where we 
derive the analytical expression of the above-mentioned local scaling index 
7(q), which had only been found numerically in ref. 1. Before doing so, we 
first describe a renormalization procedure that enables us to generate the 
binary sequence 0L) by a substitution acting on three letters. 

3. A R E N O R M A L I Z A T I O N  T R A N S F O R M  OF T H E  B I N A R Y  
S E Q U E N C E  G E N E R A T E D  BY A CIRCLE M A P  

Let us consider again the binary sequence 0(n)n )1 defined by Eq. (2.3). 
The purpose of this section is to show that this sequence can also be 
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generated by iterating a set of renormalization operations that are deter- 
mined both by the continued fraction expansion of ~ and the ~ expansion of 
A, to be defined below. In order to do so, we first need to recall some 
elementary results of number theory. 

The continued fraction expansion of any number ~ ( 0 < ~ <  1) is 
defined by the expression 

1 
= 1 = [ a l '  a 2 ' " ' ]  (3.1) 

a~ +--------f- 

a 2 + - -  

where the integer coefficients (quotients) a~ are determined by the recur- 
sion formula 

an+ ~ = Int(1/~.) (3.2) 

The remainders ~n are given by 

~'n + ~ = Frac(1/~n) (3.3) 

with the initial condition 

~o=ff (3.4) 

These definitions imply in particular 

1 
G = = [ a ,  + 1, . . . ]  ( 3 . 5 )  

The sequence of best rational approximations rn/G to ~ is obtained by 
the vanishing of the remainders Cn in the continued fraction expansion. The 
recursion relations for the integers rn and s,, are (for n > 1) 

rn=anrn  l +rn  2; Sn'~-anSn-l + S n - 2  (3.6) 

with the initial conditions 

ro=0, s o = l ,  r l = l ,  st=a1 (3.7) 

We then have the useful relations 

r,+rn_1~n, s ~ - r n  (3.8) 
~=sn+s~_l~ ~, ~ =  --sn_l~_G_ l 
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We now define the best approximations of a given number A by 
integer multiples of ~ mod 1. A number D = nff - m is a best approximation 
to A if there exists e > 0 such that (n, m) is the integer pair with the smallest 
positive n fulfilling the inequality 

I A -  (n~-m) l  = LA-DI <~ (3.9) 

When e decreases to zero monotonically this condition determines a 
sequence of numbers Di that converges to A. 

1. When A = 0, the sequence of best approximations of 0 by integer 
multiples of ~ rood 1 [fulfilling Eq. (3.9) with A = 0] is wellknown. (1~ It is 
given by 

( - 1 )  n 
6n=s,[--rn= (3.10) 

S n -t-  S n _ 1 ~ n  

The sign of fin alternates and its absolute value decreases monotonically 
to 0. 

2. When 4 r  we show in Appendix A that the sequence of best 
approximations of A is related to the following expansion of A in terms of 
the 6n : 

4 =  ~ pn~, (3.11) 
n = O  

The integers Pn and the remainders Rn are defined recursively by the 
relations 

1 = 
with the initial condition 

; Rn+l =Rn-pn6~ (3.12) 

Ro=A < 1 (3.13) 

We are now able to derive an exact decimation procedure acting on 
the binary sequence (Zn). This transform will involve three "letters" A, B, 
and C (although at the initial step there are only two symbols 0 and 1). We 
associate a sequence of letters W~ to the sequence of numbers (~, = n~)n~l 
by the rule 

I = A  if 0 < ~ , , < I n f ( A , ( )  

W, = B if Inf(4, () ~< c~, < Sup(A, () (3.14) 

= C  if Sup(A, () -..< ct~ < 1 
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By choosing 

A = I  

B = 0  

C = 0  

if A<~; B-=I if ff<A (3.15) 

the sequence (Xn) of Eq. (2.3) is identical to (Wn). The set of return maps 
defined in Appendix A will now be used to construct a set of renor- 
malization operations. These operations are products of four elementary 
transformations S, T~, T2, and T3 that change both the values of ~ and A 
and the letters A, B, and C, but generate~the same infinite sequence of let- 
ters (W,). At each step, the elementary transformation is chosen according 
to the current values of ~ and A. The action of the renormalization 
transforms is also expressed in terms of the quotients an of the continued 
fraction expansion of ~ and of the coefficients p~ of the ~ expansion of A, 
defined above. 

3.1. 1 / 2 < ~ < 1 :  Transformat ion S (see Fig. 2a) 

The simplest transformation that leaves the binary sequence (Z~) 
invariant occurs when 

1/2 < ~ < 1 (3.16) 

which is equivalent to 

a l = l  (3.17) 

in the continued fraction expansion of ~. The initial sequence (Wn) of 
letters defined in Eq. (3.14) is not changed when ~ and A are changed into 

~'= 1-~ ;  A'= l - A  (3.18) 

and the letters (A, B, C) are changed 
according to 

into (A', B', C') = S((A, B, C)) 

A' = C, B' = B, C '=  A (3.19) 

Figure 2a shows that this transformation just consists in reversing the 
orientation of the unit circle. The sequence of coefficients (a'n) of the 
continued fraction expansion of ~' is related to the initial sequence (an) 
(with a 1 = 1) through 

a ' l = a 2 + l ;  a'n=an+l for n > l  (3.20) 
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Fig. 2. Elementary renormalization transforms leaving the sequence (~,) invariant. (a) 
Transformation S, reversing the orientation of the circle, used for 1/2 < ~ < 1. (b) Return map  
on the arc shown by a heavy line, yielding the transformation T 1 (0 < ff < 1/2; 0 < A < ~). (c) 
Same as (b), for T2 (0 < ~ < 1/2; ~ < A < 2~). (d) Same as (b), for T 3 (0 < ~ < 1/2; 2~" < A < 1). 
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The sequences (r'~) and (s',) associated with ~' by the recursion relation 
(3.6) are related to the initial sequences (r ,)  and (s,) for all n >~ 0 by 

r'~=sn+l-r~+l; si,=s~+l (3.21) 

which yields 

c~, = s'n ~' - r'n = -s , ,  + 1 ~ + rn + 1 = - 6 n  + l (3.22) 

Therefore,  the ~' expansion of zJ' involves the sequence (p;,) related to the 
initial sequence (p , )  (where P0 ~ 0 is necessarily equal to a~ = 1) by 

p ; = l + p ~ ;  P',,=Pn+~ for n > l  (3.23) 

3.2. 0<i;<112: Transformations T1, T2, T3 

The t ransformat ion S maps ~ > 1/2 onto  ~' < 1/2. We are thus led to 
study the case 0 < ~ < 1/2, characterized by a~ > 1. The sequence of letters 
(Wn) can also be simply generated by the return map of the rota t ion with 
angle ~ into the interval [~, 1 ] (see Figs. 2b-2d).  This return map is again a 
rota t ion with angle ~ on a circle of length 1 -  ~. By rescaling this circle to 
unity, the new rota t ion angle ~' becomes 

~' = ~/(1 - ~ )  (3.24) 

The new sequence (a'n) is related to the initial one (an) by 

a ' l = a l - - 1 ;  a',,=a,, for n > l  (3.25) 

The associated sequences (r'n) and (s',) are given, for all n ~> 0, by 

r'~ = rn ; s'n = sn - r~ (3.26) 
so that  

6', = s'n~' - r;, = 6n/(1 - ~) (3.27) 

The letters (A, B, C) that are ascribed to the different parts of this circle 
must be changed according to different rules, depending on the values of A 
relative to ff and 2ft. 

0 <A < (: Transformation T1 (see Fig. 2b). When 

0 < A < ~ (3.28) 

the new value A' of A is 

A ' =  zl/(1 - ~) (3.29) 
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and the new letters (A', B', C ' ) =  TI((A, B, C)) are given by 

A' = AC, B' = BC, C' = C (3.30) 

Since aj > 1, using Eqs. (A.7)-(A.9), one finds that Eq. (3.28) is equivalent 
to 

Po= 1 < a l  (3.31) 

which implies that p~ > 0. Then, using Eqs. (326) and (3.27) one finds that 
for all n 

P; = Pn (3.32) 

Transformation r 2 (see Fig. 2c). The second case ~'<Zl < 2(: 
corresponds to 

~'<A <2ff (3.33) 

Using the same arguments as above, it is easily seen that the new value A' 
of zl reads 

zl' = (A - ~)/(1 - ~) (3.34) 

and that the new letters (A', B', C ' ) =  T2((A, B, C)) are given by 

A ' - - A B ,  B ' = A C ,  C ' = C  (3.35) 

Using Eqs. (A.7) (A.9), we find that Eq. (3.33) is satisfied if and only if 
both conditions 

P0 =- 2 and Pl > 0 (3.36) 

hold. Using Eqs. (3.26) and (3.27), one gets 

p ~ = l ;  P'~=Pn for n > l  (3.37) 

2 ( < A  < 1: Transformation f 3 (see Fig. 2d). Finally, the third case 
corresponds to 

2~ < A < 1 (3.38) 

The new value 4'  of A still reads 

A ' =  (A -- ~)/(1 -- ~) (3.39) 

and the new letters (A', B', C ' ) =  T3((A, B, C)) are given by 

A' -= AB, B' = B, C' = C (3.40) 
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The condition (3.38) is fulfilled either when 

p o > 2  or p l = 0  (then po = al) (3.41) 

Using Eq. (3.12), one gets 

p ; = p o - 1 ;  P',=Pn for n > l  (3.42) 

In Summary, 

S applies when al = 1 and is defined by Eqs. (3.19)-(3.23). 
T1 applies when al > 1 and Po = 1 and is defined by Eqs. (3.30)-(3.32). 
T2 applies when a l > l ,  p o = 2 ,  and p l > 0  and is defined by 

Eqs. (3.35)-(3.37). 
T 3 applies when a I > 1 and either P0 > 2 or Pl = 0 and is defined by 

Eqs. (3.40)-(3.42). 

Figure 3 shows in which domain of the unit square (0 ~ if, A ~ 1) each of 
these transforms holds. When a 1 = 1, S first drops the first term of each 
sequence (a,) and (p~), then adds 1 to the first term of both remaining 
sequences. Thus, it cannot be applied twice consecutively, because a'l is 
always larger than 1. The operation T1, I"2, or T 3 reduces al by one unit, 
as well as Po if not equal to 1. A sequence of renormalization operations is 
then uniquely determined by the sequences (an) and (p~). 

A i 

1 

112 

S 

Fig. 3. Partition of the parameter space (O<d, ~'< 1) into regions where the elementary 
transforms S, T 1, 7"2, and T3 hold. 
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The case where both of these sequences are periodic (or at least 
become periodic after some order) is of special interest. In this case, there 
exists a unique renormalization operation on the letters A, B, and C. It is 
the product of transforms S and Ti corresponding to the common period of 
these sequences. Such values of (~, A) will be said to be renormalizable. Let 
us describe explicitly a simple example. The simplest irrational number 
with a periodic continued fraction expansion is the inverse golden mean 

= z 1 = (x/5 _ 1 )/2, characterized by ai = 1 for all i. Then, S n _  1 = rn = Fn, 

where F,  denote the Fibonacci numbers defined by the recursion relation 

and we have 

F , = F n _ ,  + F,_2(Fo = 0; FI = 1) (3.43) 

6, = F ,+  ~ - F ,  = ( -  1)"/r ~+1 (3.44) 

If the ~ expansion of A has period 1, p i =  1 for all i and 
3 = z 2= 1 -  r -~ fulfills the Kesten condition introduced in Section 2. If 
the ~ expansion of A has period 2, e.g., P2i = 1 and P2i+ ~ = 0 for all i, A = 1 
yields a trivial model. Hence 3 is the smallest periodicity of the ~ expansion 
of 3 yielding a nontrivial case that does not fulfill the Kesten condition. 
Then 

P3i+l-=pl,  P3i+2-=p2, P3i+3=P3 forall  i~>0 ( w i t h p o = l )  (3.45) 

There are three possible values of A, namely 

Pl = P2 = 1 and P3 = 0; 3 = 1/2 

p 2 = 0  and pl--- p3 = 1; A = l - � 8 9  i (3.46) 

Pl = 0  and p 2 = p 3  = 1; A =�89 -2 

The first case ( ~ = z  ~ , A = l / 2 )  is the image by S of the case 
(~ = ~ 2, A = 1/2), already 
notational consistency, we 
following: 

studied in refs. 1 and 6. For  the sake of 
will still use this parametrization in the 

~-~-'E -2, Z~ = 1/2 (3.47) 

According to the results of this section, the associated sequence of renor- 
malization operations is periodic, and its period consists of T2, S, T3, S, 
T1, S applied successively. The renormalization operation on the letters 
corresponding to the product 

T =  S T  1 ST3 ST2 (3.48) 
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is defined by T((A, B, C)) = (A', B', C') with 

A' = CAC, B' = ACCAC,  C' = A B C A C  (3.49) 

The parameters ~ and A are invariant under the application of this tenor- 
realization operation. This case provides the simplest example for which 
the scaling properties of the Fourier transform of the structure associated 
with the sequence ()~n) will clearly appear. 

More generally, we can consider a larger class of quasiperiodic sequen- 
ces of letters. They are also defined by a rotation of angle ~ on the unit cir- 
cle. Consider the points 0, ~', and p arbitrary other points Ai (1 ~< i~< p) on 
the circle, defining (p + !) intervals. By ascribing to each of these intervals 
a different letter A, B, C, D,..., a quasiperiodic sequence of letters is then 
defined. The return map method, used to build the renormalization 
operations described above, can also be applied, but the number of 
possible elementary transformations Ti becomes much larger. 

We end this section by noting that a similar renormalization scheme 
has been used in another context in ref. 11. 

4. SCALING PROPERTIES OF THE FOURIER S P E C T R U M  

In this section, we show how the renormalization transform 
introduced in Section 3 can be used to study the structure factor (Fourier 
transform) of the model, at least for some values of the rotation number 
and the window width A. Of special interest are the renormalizable values 
of the Couple (~, A), i.e., those values that are left unchanged by some 
product of elementary transforms S and Ti defined above. For sake of 
definiteness and simplicity, we focus our attention on the example 
(~ = ~-2; A = 1/2), already considered in refs. 1 and 6, and quoted above. 

Before we proceed to an actual derivation of the local properties of the 
Fourier transform of our model, let us recall some basic definitions and 
properties of Fourier spectra. 

For any finite number N of atoms, consider the partial Fourier sums 

N 

Gu(q)= ~ exp(iqxk) (4.1) 
k = l  

where the xk are the atomic abscissas of the model, given by 
Eqs. (2.1)-(2.3). Define the associated static structure factor 

1 
Su(q) = ~ IGN(q)f 2 (4.2) 
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and the intensity measure dHN(q) = SN(q) dq. In the thermodynamic limit, 
dHu(q) converges toward a positive measure dH(q), known as the spectral 
(intensity) measure of the structure. In other words, it turns out that only 
the quantity 

H(q) = lira SN(q' ) dq' 
N ~ o o  

(4.3) 

is a well-defined nondecreasing function, called the distribution function, or 
integrated density, of the intensity measure. The structure factor of the 
infinite structure has the formal definition 

dH(q) = S(q) dq (4.4) 

which does not lead to a function S(q) in general, but rather to a 
generalized function (distribution). Such a notational prudence is needed 
when dealing with singular measures, Which is precisely the purpose of this 
paper. 

In a periodic or quasiperiodic structure, there are values qo of q such 
that G(qo),~ C(qo)N, C(qo) being some complex amplitude. H(q) then has 
a discontinuity of strength I C(qo)[ 2 at q = qo, and the structure factor S(q) 
contains a Dirac peak: ]C(qo)[ 2 ~ (q_  qo)- These values qo form a reciprocal 
lattice in the periodic case and a dense module in the quasiperiodic case. In 
amorphous systems, the averaged structure factor S(q) is usually a smooth 
function: GN(q) grows typically a s  N U2. 

In the present case, it will be shown in the following that there is a 
dense set of values q0 of q for which Gu(qo ) grows as N r(q~ with 
1/2 < 7(qo)< 1. In particular, for the values qo of the form (4.23), 7(qo) will 
be given by Eq. (4.36). It should now be clear that this result implies, as far 
as the local properties of the Fourier spectrum are concerned, an inter- 
mediate kind of behavior between quasiperiodic and random. More 
precisely, let qo be a value of q of the form (4.23) such that 1/2 < 7 < 1. We 
then have SN(qO ) "~ N 2~- 1. Moreover, for q close enough to qo, SN can only 
depend on q through the scaling form 

SN(q) "~ U2~ l ~ [ N ( q -  qo)] (4.5) 

This argument was introduced in ref. 1, where it was confirmed by 
numerical computations. An integration then yields 

HN(q) -- HN(qo) ~ N 2~ - 211-0 [ N(q - qo)] (4.6) 

Since the rhs of this expression is necessarily finite in the N ~ oe limit [see 
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Eq. (4.3)], powers of N have to cancel out, and the result of ref. 1 is 
recovered as 

IH(q) - H(qo)l ~ Iq - qol = (4.7) 

with 

a = 2 ( 1 - y )  (4.8) 

If 1/2 <7 < 1, then 0 < c  t <  1, and the intensity (structure factor) S(qo), 
which is formally equal to the derivati~;e of H(q) at qo, is divergent 
(infinite), but "less infinite" than in the presence of a Dirac peak, which 
corresponds to ~ = 1 (~ = 0). More precisely, experimental scattering data 
obtained with a finite resolution dq will show a maximal intensity 
Smax ~ (dq) ~ I in a region of width Aq centered around qo, such that the 
peak area /~ ~ (Aq) ~ vanishes in the limit of high resolution (dq ~ 0). Of 
course, this area approaches/~0 = IC(qo)l 2, a nonzero limit, in the case of a 
Dirac peak. Let us now proceed to the quantitative study of these proper- 
ties in the example under consideration. 

The action of the renormalization transform T of Eq. (3.48) on the 
letters A, B, and C, corresponding to the intervals [0; ~--2], [~-2; 1/2], 
and [1/2; 1], respectively, has already been given in Eq. (3.49), 

A ~ CAC 

T: B ~ ACCAC (4.9) 

C --, ABCAC 

This substitution is the central object of the present study. Let us first 
introduce the matrix M associated with T. By definition, M relates the 
numbers nA, nB, nc of letters of each type in any finite word W and the 
numbers n3, n~, n~ of letters in the transformed word T(W): 

n~ = M  n~ , with M =  0 0 1 (4.10) 

\n'c I \ n c /  \2  3 2 / 

The characteristic polynomial of M is P(x)=det(x~ - M ) =  
(x + 1 )(x 2 -  4 x -  1 ), and hence the eigenvalues of M are r 3, - 1 ,  and - r - 3 .  
The (right) eigenvector associated with the leading eigenvalue r 3 reads 
(z-2; r-3/2; 1/2). These components are the lengths of the corresponding 
intervals of the circle, as they should be. Indeed, these components give the 
relative frequencies at which the different letters occur in any infinite word 
of the form l im,_  ~ T"(Wo) for an arbitrary initial W0. 



1048 Aubry, Godr~che, and Luck 

In ref. 6, we introduced a different renormalization transform T4, valid 
only for A = 1/2, acting on four symbols, denoted by a, b, c, d. The T4 also 
admits (~ = ~-2; A = 1/2) as a fixed point. The associated matrix is 

( 0  0 1 1'~ 

2 1 2 2 
M 4 --  (4.11) 

2 2 1 2 

\1 0 1 0 ]  

Its eigenvalues read z 3, - 1 ,  - 1 ,  and - z  -3. Hence M 4 has an extra eigen- 
value ( - 1 )  with respect to M. Clearly, both mappings T and T4 have to 
describe the same object. It can indeed be checked that the action of M is 
equivalent to that of M 4 in the three-dimensional subspace defined by 
X 1 = X4, if Xl " X4 are the coordinates in the linear space where M 4 acts. 

The easiest way to deal with Fourier transforms is to leave the initial 
conditions unspecified and to consider the three infinite sequences of words 
(n >~ 0) 

U, = T"(A); V, = T"(B); W, = T"(C) (4.12) 

Let v~, v v., v,W denote the total numbers of letters (atoms) in these words. 
These quantities obey the recursion relation 

where M '  is the transposed 

v~. = ( M ' ) "  

t v w  ) 

A simple recursive calculation yields 

[ g 3 .  1 �89 2-1- ( - )  n ] 

(M')"  -- F3. �89 + ( - ) " ]  

\ F3n �89 - ( - ) " ]  

The obvious 

+, k / k 
v~+ 1 = M '  v, ~ (4.13) 

\ vw+' / t v"w t 

m a t r i x o f  M, and hence 

Iv;k 
v~ (4.14) 

\v~') 

~ [ F 3 . + , - ( - ) " ]  k 

� 8 9  + 2 - ( - )"] 
�89 + ( - ) " ]  / 

u ~ w 1 gives initial condition v o = v o = v o = 

(4.15) 

. . . . .  F3n+ 2 (4.16) Vn=F3n+l;  Vn--Vn -- 
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Let now l~, l~, and l,, ~ denote the lengths of the words U,, V,,, and W,, 
respectively. These quantities also obey Eq. (4.13). The initial condition 
l; = l; = 1 + 4, l ; '=  1, combined with Eq. (2.5) giving the value of the mean 
interatomic distance a, yields 

l~ = aF3,, + , + ( a -- 1)(--) n 

l; = aF3,+ 2 + ( a -  1)(-- )n (4.17) 

12 = aF3. + 2 - (a-- 1 ) ( -  )~ 

The first terms on the rhs of these equations are the expected leading terms, 
equal to the product of a by the numbers of atoms. The second terms are 
related to the fluctuation fin, which has been shown in refs. 4 and 5 to 
destroy the average lattice of the structure. It will turn out that these 
oscillatory terms are also responsible for the absence of Dirac peaks in the 
Fourier spectrum. The presence of such correction terms in Eq. (4.17), 
which do not vanish in the n ~ oo limit, obviously originates in the eigen- 
value ( -  1) of M lying on the unit circle. The interplay between subleading 
eigenvalues of substitutions and Fourier transforms has already been con- 
sidered in ref. 7. We will comment some more on these general aspects in 
the discussion. Let us just recall here that the present situation (one eigen- 
value on the unit circle) has been discarded in ref. 7 as being a marginal 
case. 

We define the Fourier amplitudes of the words Un, Vn, and W~ as 
F 3 n + !  

g2= ~ exp(iqx~) 
k = 0  

F 3 n + 2  

g,'~= ~ exp(iqx~) (4.18) 
k = 0  

F3n+2 
gW= ~ exp(iqx}~) 

k = O  

where x~ = 0, and x~ - x~_ ~ = (1 + ~) (resp. 1) if the k th letter of Un is A or 
B (resp. C). The same construction holds for V, and W,. It follows from 
their definition (4.12) that these words satisfy 

Un+l=WnUnWn; Vn+l=UnWnUn+l; Wn+l~UnVnUn+l 
(4.19) 

Their Fourier amplitudes therefore obey the recursions 

u '~' �9 u vv w g~ + 1 = g ,  + exp(  iql2 ) g~ + exp[tq(ln + l~ )] g~ 

gnv+l = g ~ + e x p ( i q l ~ ) g 2 + e x p [ i q ( 1 2 + 1 2 ' ) ]  g2+~ (4.20) 

g2'+ ~ = g~ + exp( iql~) g~ + exp[  iq( l~ + l~)] g~"+~ 
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with the initial conditions 

g~= g~=expEiq(1 + 3)]; g ~ = e x p ( i q )  (4.21) 

For generic values of the wavevector q, the phases such as exp(iql~) form 
complicated aperiodic sequences, and hence the behavior of the Fourier 
amplitudes as functions of the word sizes seems very difficult to predict in 
general. Their asymptotic growth as n ~  ao can, however, be extracted 
from Eq. (4.20), for those values of q for which all the phases entering this 
equation have a simple limit behavior, such as, e.g.,-a limit cycle. Hence, 
this study will only give local information on the spectrum at a dense but 
countable set of values of q. The oscillatory character of the correction 
terms ( a - 1 ) ( - ) "  in Eq. (4.17) leads us to treat even and odd values of n 
separately, and hence to consider the sequences of numbers 

X~ p) = qaF6n + p(mod 2n) (4.22) 

for fixed p between 0 and 5. The simplest possible behavior for these 
sequences is convergence to some limits Op = lim, ~ ~ X~ p). It is proved in 
Appendix B that this convergence occurs if and only if q has the form 

qa/2n = l ( j  + kr) (4.23) 

where j, k are (positive or negative) integers. The limits are readily 
obtained from the values of Fp(mod 4): 

/'E =/~ k 0 o = ~ k ;  0, ~ ( j +  ); 

03 = ~ ( 2 j -  k); 04 = (k - j); 

"02 = ~ (j  + 2k) 

05 = ~ j  

(4.24) 

We now define an angle q~ through 

99 = q ( a -  1) - - -  ( j +  kz) (4.25) 
2 2 + r  

in terms of which all the required phases have simple limits, namely 

ql'~, ~ 01 At- (t9; ql~, --4- 02 -~ qg; q12 w -.+ 02 -- (p 

ql~,,+l--+O4--(p; ql~,,+l ~Os--qg;  ql2W+l ~ O s + g o  
(4.26) 

(mod 2n) as n ~ oo. These limits are reached exponentially rapidly (with 
r-6n corrections). Equation (4.26) allows us to write the asymptotic form of 
the recursion relations (4.20) as follows: 
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ig .\ fgT.+,  
gT,+, =Ml(q)  g~, ; Ig~n+2  =M2(q) g~n+l (4.27) 

/ 
\gT',+ ~/ \g2 w ] \ g 2  w + 2  ] \g2 w + l  / 

where Ml(q) and M2(q) are now two constant complex matrices: 

/ e i(~ 0 1 +e i~ 

Ml(q) = 1 +e  i(~ go) 0 eim~+go)+ei~ 2i~176 
\1 -]-e i(O4+go) e i(01+(9) ei(O3+ 2q') + e2i(~176 (9) I 

e i(~ 0 1 +e i~176 

M2(q)= 1 +e  i~~ 0 e sin" go)+ei~ 2~~ I (4.28) 
1 "q'- C i(Ol go) Gi(04 -- ~p) ei(Oo 2(9) + e2/(Oo - go) j 

These matrices depend on q, i.e., on the integers j and k, through both the 
Op and ~0. They also depend on the parameter ~ in a continuous way 
through ~0. For q=0,  Eq. (4.13) is recovered, as it should be, since 
MI(0) = M2(0) = M t. 

The asymptotic behavior of the Fourier amplitudes for q given by 
Eq. (4.23) is now very simple to obtain. If A denotes the (possibly complex) 
largest eigenvalue of the matrix product M~(q)M2(q), then we have 

lg~l ~ Ig~l ~, Ig,71 ~ tAI "i2 (4.29) 

Since the word lengths (numbers of atoms) grow as ~3, [see Eq. (4.16)], 
the above result implies the following power-law relation between the size 
N of a finite sample of the structure and its Fourier amplitude G N" 

G u ' ~ N  ~ with ~/=(ln IAI)/(61n~) (4.30) 

The general considerations of the beginning of this section show that the 
local scaling exponent y has to obey the inequalities 0 ~< ~ ~< 1. 

Let us now give the value of the exponent 7 for any wavevector q of 
the form (4.23). We have shown that this exponent is related by Eq. (4.30) 
to the largest eigenvalue of the matrix product M~(q) M2(q); these matrices 
are themselves explicitly given in Eq. (4.28). A standard but tedious 
calculation of the matrix product and of its characteristic polynomial 

P(x) = det [x~ - M~(q) M2(q)] (4.31) 

yields 

P(x) = (x - 1 ) r x  2 - f i x  q- ( - ) k ]  (4.32) 
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with 

a=2 +2(_)k+ ( _ ) j +  (_ ) j+k+ [ ( _ ) ; +  1];(, 

+ {ZjZk + [ (_)k + 1]Zj} COS ~0+ {e)j09k + [ (_ )k_  1];(y} sin q~ 

and where ; ( ~ = i n + i  -n  and 09~ 
functions of n (mod. 4) only, and 

;(0=2; ;(1 =0; •2 = --2; Z3=0  

090=0; 091 =2;  ~ 2 = 0 ;  ~o3-- - 2  

The eigenvalues are therefore given by 

k even: x = e ", 1, e - "  with 2 cosh # = a 

k odd: x = e", 1, - e - "  with 2 sinh # = a 

(4.33) 

= - i ( i " - i - " ) .  These quantities are 

(4.34) 

(4.35) 

The largest eigenvalue A, yielding the scaling exponents ~ and c~ through 
Eqs. (4.30) and (4.8), is such that IAI =exp  I#1 in both cases, and hence 

y = 1#1/(6 In ~) (4.36) 

According to the values of the integers j and k (mod 4), Eqs. (4.33) (4.35) 
yield different analytical forms for the "dispersion relation" giving # (i.e., 
the scaling exponents) as a continuous function of ~0 (i.e., the parameter 
and the wavevector q). The 16 possible values of (j, k) (mod 4) lead to 
three different kinds of behavior, described just below. Figure 4 summarizes 
the discussion. 

(I) No singularity at all, i.e., # = 0, 7 = 0, and c~ = 1, for all values of 
the angle q~. This occurs for six values of the couple (j, k) (mod 4), namely 
k = 2  (any j )  and k = 0  (and j =  1 or 3). 

(10 Nondivergent singularity." 7 varies in a continuous way between 0 
and 7max = 1/2 as a function of the angle q~. This occurs for eight values of 
the couple (j, k) (mod 4), namely k = 1 or 3 (any j). The dispersion relation 
then reads 

k = 1 (mod 4) ~ a/2 = sinh # = (09j - ;(j) sin cp 

k = 3 (mod 4) ~ a/2 = sinh # = - ( e ; j  + Zj) sin q~ 
(4.37) 

)"max = 1/2 occurs when sin q~ = _+1 in both cases. 

(Ill) Possibly divergent singularity." 7 varies in a continuous way 
between 0 and 7max = 1 as a function of the angle q~. This occurs for the 
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j(mod 4) 

"O 
O 

E 

0 1 

2 0 0 

2 3 

0 0 

Fig. 4. Behavior of the local scaling exponent ,/as a function ofj and k (mod 4): Class I (no 
singularity at all) is denoted by 0. Class II (nondivergent singularity) corresponds to shaded 
areas. Class III, (possibly divergent singularity) corresponds to cross-hatched areas. 

remaining two 2 values of the couple (j, k)  (mod 4), namely  k = 0 a n d j  = 0 
or 2. The  dispersion relat ion then reads 

j = 0 (rood 4) ~ 0/2 = cosh # = 5 + 4 cos go 

j = 2 ( m o d 4 ) ~ a / 2  c o s h # = 5 - 4 c o s g 0  
(4.38) 

A divergent  s tructure factor  S(q) (a peak)  is observed if and only if H(q) is 
not  differentiable, i.e., for c~ < 1 or  7 > 1/2, as ment ioned  below Eq. (3.8). 
This occurs whenever  the angle go obeys the inequali ty 

( _ ) ~ 2  cos go > ( x / 5 -  5 ) / 4 =  -0 .690983 (4.39) 

For  a given structure, i.e., a given value of the pa rame te r  4, the "peak  con- 
dit ion" (4.39) will be satisfied for some of the wavevectors  of  class (III) .  

Let us give an example  of  these analytical  results by considering the 
case studied in ref. 1: q = 3rr/a (i.e., j =  6, k = 0) and ~ = 2. Equat ions  (4.25) 
and (4.38) then yield go=3~/2 ,  and cosh p = 5 .  We have therefore 
A = e ~ = 5 + 2 ~ and 7 = #/(6 In z) = 0.793979 > 1/2. The  scaling index )~ 
in t roduced in ref. 1 is just  2=A/'c 6. Hence  we have ,i. = (5 + 2 ~,f~)/v6 = 
0.551651, in excellent agreement  with the numerical  value 2 ~ 0.552 of ref. 1, 
extracted f rom a numerical  scaling analysis, based on a different approach ,  
namely  the app rox ima t ion  of zl = 1/2 by a sequence of values A r fulfilling 
Eq. (2.7). 
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We now aim to exhibit which values of q and r lead to a maximal 
scaling exponent 7 = 1, since this particular value corresponds formally to a 
Dirac peak. Any wavevector q belonging to class (III) can be written as 

qa J 
- -  = -  + Kr (4.40) 
2re 2 

with the notation j =  2J  and k = 4K, where J and K are now arbitrary 
integers. According to Eqs. (4.36) and (4.38), 7 = 1 occurs whenever cosh 
# = 9, i.e., ( - ) J  cos q~ = 1, and hence q)-- (2M + J)r~, for some integer M. 
This condition determines uniquely q and ~ as follows: 

2 M + J  
q = 2~(Kz - M); ~ - (4.41) 

K z -  M 

For any values of the rotation number ~ and the window width A that do 
not obey the Kesten condition (2.7), the only possible Dirac peaks are 
expected to be trivial Dirac peaks, for q multiple of 2gy, if the parameter 

= x/y is rational. We hope to give a general proof of this assertion in a 
further publication. These peaks are recovered by taking K = 0  in 
Eq. (4.41). What occurs for K r  is more subtle: when ~ tends toward a 
value given by (4.41), the exponent 7 of t h e  structure factor at the 
corresponding value of q indeed goes to unity in a continuous way, but the 
associated amplitude of the singularity (4.30) vanishes in such a way that 
there is no Dirac peak in the limit structure. The occurrence of this striking 
discontinuous kind of behavior has been checked by a numerical iteration 
of Eq. (4.20). 

We have been led to study values of q of the form (4.23) by an 
argument of simplicity: these are the values of the wavevector for which the 
asymptotic behavior of the sequences X~ p) of Eq. (4.22) is the simplest, 
namely convergence to limit values Op. More general values of q, 
corresponding to limit cycles for the sequences X~P), are also tractable 
along the very same lines as we did previously. A general method for 
finding these values of q is given in Appendix B. For  instance, the values 
of q 

qa 1 
2re 40 [ J ( 2 + r ) + K ( 3  ~)] (4.42) 

where J and K are two integers, yield a limit two-cycle, namely X~ p) ~ 0p 
and X(P)2, + 1 ~ Op". For any value of q such that the X~ p) of Eq. (4.22) admit a 
(p-dependent) limit m-cycle (m>~l), the asymptotic form of Eq. (4.20) 
involves 2m constant matrices M~(q),..., M2m(q), and the entries of those 
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matrices depend on 6m limit angles. The associated Fourier amplitude still 
grows according to a power law, namely 

g ~ N  ~ with 7 = ( l n t A j ) / ( 6 m l n z )  (4.43) 

where A is now the largest eigenvMue of the ordered matrix product 
M~(q)...Mzm(q). The complexity of the calculation hence increases 
drastically with the length m of the limit cycles. 

We end this section by two numerical illustrations of our results. 
Figure 5 shows plots of numerical values of the structure factor S N ( q )  

defined in Eq. (4.2) corresponding to the values (a) ~ = x / ~  and (b) 
= ~/-3, as a function of qa/2~. We have chosen a rather small sample size 

( N - 2 0 0 ) ,  in order to improve the readability of the plot. A large number 
of peaks are clearly visible. All the bigger ones have been labeled by 
couples of integers (Jr, K), according to Eq. (4.40). The above analysis of 
the wavevectors of the form (4.23), corresponding to convergence of the 
sequences (4.22), therefore describes correctly the most clearly visible 
singularities of the spectrum. 

Another way to visualize the scaling properties of the Fourier 
a m p l i t u d e  G N defined in Eq. (4.1) is to plot, in the complex plane, the 
points Go=0,  G1 ..... GN ..... successively, and to join G N to  GN+ 1 

( N =  0, i, 2,..). Such complex plottings have been extensively used to study 
other arithmetical sequences (see, e.g., ref. 12). In particular, the curve thus 
obtained is self-similar for the values of q given by Eq. (4.23). Indeed, the 
modulus of G N behaves as 

R N = [GNi ~ N ~(q~ (4.44) 

It is therefore clear that the fractal dimension of this curve is 

D = 1/7(qo) (4.45) 

Let us take, for example, the values qo = 3n/2, ~ = 2 considered above, for 
which 7 = ln(5 + 2 ,~/6)/(6 In ~) = 0.793979. Hence the fractal dimension of 
this curve is D = 1.259480. Figure 6 shows two parts of this curve at two 
different scalesl The numbers of points of these plots are P4 = 305 and 
p6=5473 for Figs. 6a and 6b, respectively. Here Pn are the integers, 
denoted by r, in ref. 1, defined through 

P,=p ,_ I+F3 ,+~;  p o = l  (4.46) 

Hence p, are asymptotically proportional to the lengths of the words 
defined in (4.12): 

Pn" Vu: Vn v '  vw~21-~2: "~: 1" 1 (4.47) 
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Fig. 5. Plot of the structure factor SN(q) of Eq. (4.2) of a finite sample with N =  200 atoms 

as  a function of qa/2~ for (a) ~ = ~ and (b) ( =  ,,/3. The largest peaks are labeled by 
integers (J, K) according to Eq. (4.40). 
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(a) 

(b) 

Fig. 6. Complex plot of the sequence of Fourier amplitudes Gu(qo) for qo = 3~/2 and ~ = 2: 
( a )  P4 = 305 points, (b) P6 = 5473 points. The fractal nature of this curve is discussed in the 
text. 

It turns out that stopping the plots after Pn steps (n = 2, 4, 6,...) makes them 
especially symmetric and aesthetically appealing. The associated amplitudes 
Gu are real, and read Gp4= 88 and Gp6 = 8 8 0 ,  respectively. Hence, these 
parts of the curve yield the approximate value 

ln(880/88) 
0.7971 

ln(5473/305) 

of 7. More generally, self-similar curves may be drawn for the values of q 
corresponding to limit m-cycles described above. Figure 7 shows plots of P6 
points in two examples with a value of q of the form (3.42), yielding a limit 
2-cycle behavior, namely (a) qa/2g= 13/8, 3=2.1  (7=0.53632), and (b) 
qa/2rc = 7/8, ~ = 0.9 (7 = 0.58540). These values of 7 have been obtained by 
a numerical iteration of Eq. (4.20). 

5. C O N C L U S I O N  

In the present work, we have considered geometrical properties of a 
model of a nonrandom structure beyond quasiperiodicity. More precisely, 
we analyzed the self-similarity (inflation rules) of the structure and the 
scaling properties of its Fourier transform. It is remarkable that, although 
the binary sequence generating the structure is quasiperiodic, the structure 
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(al 

(b) 

Fig. 7. Same as Fig. 6, for two values of q0 corresponding to a limit 2-cycle of the sequence 
(4.22): (a) qa/2n = 13/8, ~ = 2.1. (b) qa/2n = 7/8, ~ = 0.9. Each plot contains P6 = 5473 points. 

itself is not. This transition from quasiperiodic to "somewhere beyond" is a 
subtle effect, since it involves number-theoretic considerations. 

More generally, we now comment on a general framework, introduced 
in ref. 2, able to describe structures with such an intermediate order. Any 
translationaily invariant classical Hamiltonian (with sufficiently decreasing 
long-range interactions) always has "weakly periodic" ground states. Weak 
periodicity implies local order at all scales, but, as already mentioned in the 
introduction, does not imply periodicity or quasiperiodicity. Reciprocally, 
it is not proven that any weakly periodic structure is always the ground 
state of some translationally invariant Hamiltonian. Concerning the model 
studied here, it will be proven in a forthcoming publication that it is a 
weakly periodic structure, and that there exists a translationally invariant 
Hamiltonian for which the set of ground states uniquely consists of this 
configuration, all the translated structures, and all their possible limits. In 
spite of this degeneracy, the ground-state entropy will be shown to remain 
zero, as for standard incommensurate structures. 

The present study also has the virtue of revealing, on a particular 
example, the interplay among three kinds of properties: 

1. Existence of an underlying average lattice. In one dimension, this 
problem just amounts to considering the fluctuation 6n defined in Eq. (2.6). 
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In the present case, since 3~ diverges whenever the Kestcn condition 
[Eq. (2.7)] is not fulfilled, the structure is said to have no average lattice. 

2. Quasiperiodicity (or more generally almost-periodicity), i.e., a 
Fourier transform composed of Dirac peaks. 

3. In the case of sequences generated by a substitution (inflation 
rules), Bombieri and Taylor (7) have stressed the importance of a charac- 
teristic of the eigenvalue spectrum of the substitution referred to as the 
Pisot-Vijayaraghavan (PV) property. A substitution is said to have this 
property if all the eigenvalues of the associated matrix lie inside the unit 
circle, except the leading one (which is always real and larger than 1). 

First, it is intuitive that properties (1) and (3) should be related, since 
an unbounded fluctuation is expected to destroy (in general) diffraction 
peaks. Furthermore, Bombieri and Taylor (7) have shown that properties 
(2) and (3) generally come together. Let us illustrate these points by the 
example of the Fibonacci sequence. A Fibonacci sequence of short and long 
bonds is easily generated by the well-known projection method. (~3-1s) Thus, 
it has a quasiperiodic spectrum. It can also be generated by a substitution 
acting on two letters: 

0 - ,  1, 1 --, 10 (5.1) 

The associated eigenvalue spectrum is ( z , - z - I ) ,  which satisfies the PV 
property. Let us also note that this sequence corresponds to the case 
A = ( =  z 2, which obeys the Kesten condition (2.7). Hence, the fluctuation 
3n is a simple bounded function of n. 

Before coming back to our model, let us mention the example of the 
Thue-Morse sequence, generated by the substitution 

0 ~ 01, ! ~ 10 (5.2) 

It is known in the mathematical literature (16) that the Fourier transform 
(with respect to n) of that binary sequence an is singular continuous. It is 
easy to realize that the geometrical Fourier transform of the short and long 
bonds model generated by this sequence has the same nature. Since the 
eigenvalue spectrum of the substitution (5.2) is (0, 2), this substitution has 
the PV property. Hence the Thue-Morse sequence is an exception to the 
Bombieri and Taylor rule. This paradox is easily solved by realizing that a 
simple prefactor vanishes in the Fourier amplitude for the values of the 
wavevector where a Dirac peak would be expected. 

The example studied in this paper is also special, since it corresponds 
to the marginal case where the second leading eigenvalue has unit modulus. 
Let us note that there exist substitutions that belong to this marginal class 
and nevertheless lead to quasiperiodic structures. A very simple example of 
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such an occurrence is given by the case (~___~-2, A ~___~.--1 = 1 - ~ )  of our 
model, which fulfills the Kesten condition (2.7). 

We will describe in a forthcoming publication the applications of some 
of the ideas contained in this paper to the case of aperiodic tilings of the 
plane. The physical properties of such structures are also of interest. We 
hope to come back to this subject in the future. 

To be complete, we mention that the consequences of the violation of 
the Kesten condition (2.7) have been considered in the study of a particular 
diffusion model in two dimensions. ~17) 

The methods used in this paper are adequate to study the local 
properties of the Fourier transform, but do not bring any further infor- 
mat ion on its global properties, such as those studied numerically in ref. 1. 
In particular, the absence of an absolutely continuous part in the Fourier 
spectrum, as well as its multifractal properties, have not received an 
analytical proof. Indeed, such statistical properties gather information 
through the whole spectrum, and hence give weight to generic values of the 
wavevector where no simple behavior is expected. This will be all the more 
true when considering physical properties of these structures. 

A P P E N D I X  A. BEST A P P R O X I M A T I O N S  OF A GIVEN N U M -  
BER BY THE INTEGER MULT IPLES  OF AN 
I R R A T I O N A L  N U M B E R  M O D U L O  1 

The problem is to find the sequence of best approximations to a given 
number A by integer multiples modulo 1 of an irrational number (. For 
convenience, we assume in the following that 0 < ( < 1 and 0 < A < 1. 

D e f i n i t i o n  1. A number D ~ n ~ -  m is a best approximation to d if 
there exists e > 0  such that (n, m) is the integer pair with the smallest 
positive integer n satisfying the inequality 

] A -  (n~-m)[  = ] A - D ]  < e  (A.1) 

When e decreases to zero monotonically, this condition determines a 
sequence of numbers Di that converges to A. It is also useful to define the 
best approximations to A by lower and upper values 

D e f i n i t i o n  2. A number D+=n(-m (resp. D ) is a best 
approximation to A by upper values (resp. by lower values) if there exists 

> 0 such that (n, m) is the integer pair with the smallest positive integer n 
satisfying the inequality 

O<(n~-m)-A---D + - A  <e  (A.2) 
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[resp. the inequality 

O < A - ( n ~ - m ) = A - D -  < e l  (A.3) 

When A = 0, the solution to this problem is well known (see, e.g., ref. 10). 
When A ~ 0, the sequences of best approximations can be obtained from an 
expansion of A on the basis of the known best approximations to zero by 
integer multiples of ~ rood 1. 

A1. E x p a n s i o n  o f  A o n  t h e  Bas i s  (6 , , )  

We define recursively a sequence of integers p,  and of remainders R,  
by the relations 

and 

p.  = Mini1 + Int (R. /6 . ) ,  a.+ 13 (A.4) 

R.+ I = R . -  p.( i .  (A.5) 

with the initial condition 

Ro = A < 1 (A.6) 

For all n, we have the inequality 

- 1 < R . / 6 .  < - , 5 .  ~/~.  = 1 / ( .  

- , 5 . < R ~ < - 5 .  1 for n even 

- 6 ,_  ~ < R,, < - ,5,  for n odd 

(A.7) 

or equivalently 

and 

(A.8) 

A = ~ p , 6 ,  (A.IO) 
n = O  

which is proven recursively. This property is checked for n = 0. Assuming 
that (A.7)-(A.9) are fulfilled at order n, the inequalities are proven at order 
n + l  by using (3.8) and (A.3)-(A.6). The cases R, /g ,<an+~ and 
a,+~<R,,/`5, have to be studied separately and yield that 
O < R ,  + ~/6, + ~ < 1/(, + 1 or - 1 < R,  + ~/(i n + l < 0, respectively. One checks 
that if p , + 1 = 0 ,  then R,+l /5 ,+~<O,  which implies a , + l < R , / 6 ,  and 
p , = a , + l .  Note that (A.4) implies, for 0 < A  < 1, that p 0 r  Because of 
(A.7)-(A.9), the remainder IR,] is smaller than I(i, ~[ and goes to zero as n 
goes to infinity. Therefore, A can be expanded as a convergent series: 

(A.9) 
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Conversely, a given sequence (Pn) fulfilling the conditions that 

O<~pn<.a.~ l 

p~_~=a n if p ~ = 0  (A.I 1) 

p o e 0  

determines by (A.10) some number 0 < A  < 1. Note that this condition 
implies that for any n, p~ and p,+~ cannot be both zero. If conditions 
(A. 11) are fulfilled, by using the fact that the sequence of signs of 6n is alter- 
nate and that an+~= I n t ( - 6 n _  ~/3n), the remainders 

Rn= ~ Pi~i (A.12) 

fulfill the inequalities (A.7)-(A.9) and more precisely - 1 < Rn/3~ < 0  if 
pn+~-r and 0 < R  J 6 , <  -6n 1/6n i f p , + l = 0 .  Then, it is readily shown 
that the recursion relations (A.4)-(A.6) are fulfilled for all n by these 
sequences of integers Pn and of remainders R,.  

As a result, a number A is characterized by any arbitrary sequence of 
integers p~ fulfilling conditions (A. 11). 

Now, we define the truncations of the series (A.10) as 

n 1 

Dn, p = p3. + ~" p~6~ (A.13) 
i = 0  

for O<~p<~p. (p integer). Note that we have Dn,p=Dn+l, o. Because of 
definition (3.10), we have 

Dn, p = S n , p ~  - Rn, p (A.14) 

where Rn, p and S~,p are positive integers 

r t - - I  

R~,p= pr~ + ~ p~r~ (A.15) 
i = 0  

n - - 1  

S n ,  p = ps. + ~ pisi (A.16) 
i = O  

Both these sequences are increasing as n and (or) p grows. With these 
definitions, we have the following theorem. 

T h e o r e m  1. The sequence of best approximations by lower values 
to A by the integer multiples of ~ modulo 1 (el. Definition 2) is the sequence 
On, p defined by (A.13) for all even indices n=2q and for O ~ p < p . .  The 
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sequence of best approximations by upper values to 3 by the integer mul- 
tiples of ~ modulo 1 is the sequence Dn,p defined by (A.13) for all odd 
indices n = 2q + 1 and for 0 ~< p < p,,. 

In order to prove this theorem, we first describe a recursive procedure 
giving both the best approximations to A upper and lower values. We 
define a series of return maps of the rotation with angle ~ on the unit circle 
in intervals where the lower edge (resp. upper edge) is a best 
approximation to A by lower values (resp. upper values). 

A2. Flecursion Procedure  

The integer multiples modulo 1 of ~ are generated by the rotation R 0 
with angle 0o = ~ on the circle with length Lo = 1. Let us start from the sim- 
plest best approximations to A by upper values Do ~ -- 1 [obtained for e = 1, 
n = 0 ,  m =  - 1  in (A.2)] and by lower values D o = 0  (e=  I, n = 0 ,  m = 0  in 
(A.3)]. 

The next multiple of ~ with the lowest n that appears in the interval 
]Do-, Do ~[ is D = 0  o + D  o = R 0 ( D o ) .  If D < A ,  D = D ~  is the 
approximation to A by lower values next to D o. Then, we set D~- - -D +o �9 If 
A < D, D = D/- is the best approximation to A by upper values next to D~ 
and we set Dr- = D o . 

All the next best approximations to A by upper and lower values 
belong to the new interval ]D~,  Di ~ [. They are generated by the return 
map R1 of the rotation Ro into the interval ]Di-, D• [. 

The return map ;i(R, J )  of a rotation R into the interval f is defined 
in general as follows: for x a point of f ,  

R(R, f ) (x)  = Rn(x) (A.17) 

where n is the smallest integer such that R"(x) belongs to f (n depends on 
the point x). 

Because the images by the return map R1 of the two edges D{ and D~- 
of this interval are obviously the same, this return map is continuous on 
the circle obtained by topological identification of the two edges of 
]Di-, D~ [ and therefore is also a rotation with a new angle 01 on a circle 
with length L1 = Di ~ - Di-. According to whether D < A or A < D, different 
recursion formulas are obtained. 

A2.1.  First Kind Reeurs ion  (see Fig. 8a) .  When D<A,  we set 

D i =D ,  D~ = D ~  (A.18) 

The length of the circle [-D~, Di ~ ] with origin D~- = D Z- is 

L1 = L0--0o (A. 19) 
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Scheme of the return map of the rotation on the circle [Do ,  D + ], with angle 0o, in 
the interval [D~-, b [ - ] :  (a) by =D<A. (b) zl < D ~ - = b .  
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With v o the rotation number Oo/Lo = ~" of Ro, the rotation angle 0~ of R I is 

readily found to be 

01 = 0 o modulo L 1 (A.20) 

and the rotation number v I = OI/L1 is 

v ~ = F r a c (  Vl--~~ ) (A.21) 

A2.2.  Second Kind Recurs ion  (see Fig. 8b) .  W h e n  3 < D ,  w e  set  

D{- = DO + , D~- = D (A.22) 

The length of this interval [Ds D ( ]  defining the return map R 1 is now 

L 1 = 0 o (A.23) 

The rotation angle of R1 is simply equal to the image of the origin modfilo 
L0 by the return map in the interval [Di-, D~-] = [Do,  D o + 00] 

01 =Oo[Int(1/Vo)+ 1] - Lo = 0o[1 - Frac(1/Vo) ] (A.24) 

and the rotation number is 

v 1 = 1 - Frac( 1/v o) (A.25) 

These recursion formulas are also easily obtained from the first-kind 
recursion formula by considering the symmetric problem where 00 is 
changed into 1 - 0 o  and A is changed into 1 - A .  One can check that 
formulas (A.21) and (A.25) are interchanged by changing Vo into 1 - v0 and 
vl into 1 - V l .  

The same recursion procedure applied to the return map R 1 yields the 
return map R2, and so on. An infinite sequence of return maps Ri is thus 
generated. They are rotations with angles 0i on the intervals [DE, D + ]  
with topologically identified edges. Because of its definition, the sequence 
D~- is monotonically increasing, but may contain consecutive equal terms. 
The new sequence obtained from D~- by withdrawing all Ds such that 
D7 = D,_ 1 is the sequence of best approximations to A by lower values by 
the integer multiples of ~. The sequence (D, + ) yields similarly the sequence 
of best approximations to A by upper values by the integer multiples of ~'. 
In order to find the sequences (D~-), (D[) ,  and (0,), we need to define a 
subsequence (D,,) of (Dn.p) [defined by (A.13)] 

Dn+1=Dn,p,_l if p , # 0  (A.26) 
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or recursively 

D.+I  = D .  I if p . = O  (A.27) 

and we set as initial condi t ions Do = 1 and D _  1 = O. This sequence has the 
useful p rope r ty  that  

D.  > Din. p for n even and for all m ~> n and p ~< p. ,  

D~ < Dm. p for n odd and  for all m ~> n and p <~ Pm 

In order  to prove  this result, it is convenient  to use the identity 

(A.28) 

3,-1---- -- ~ an+2i+l ~n+2i (A.29) 
i = 0  

which is easily p roven  by using (3.6) (3.10). Since we have p~<<.a~+~ and 
p <~ p,, ~ a,,, + l, the sum 

m--n i 
Dm,p--Dn=(~n 1+ ~, p , + e a , + i + p 5 , ,  (A.30) 

i = 0  

can be writ ten as a series where all terms have the sign of 6 , _  1 or are zero. 
Consequent ly  Dm,p - D ,  has the sign of ( -  1) ' ,  which proves  (A.28). When  
taking the limit m --, 0% these inequalities also imply 

A<D.<D.  1,p 

D,  1 ,p<Dn<A 

for n even and  p < p .  1 

for n odd and p < p .  _ 1 
(A.31) 

It  is also convenient  to consider the sequence Dn. p as a sequence Dn.q, with 
a single index i. Then  (ni, qi) is the ith term of the set of (n, q) fulfilling the 
condi t ion 0 ~< q < p . ,  ordered with the "lexicographic" definition 

i = ( n , q ) < i ' = ( n ' , q ' )  if n < n '  o r i f n = n '  a n d q < q '  (A,32) 

Then  we can prove  the following result, which implies Theorem 1: 

The  sequence of intervals I D a ,  D + ] is the sequence [Dn,.q,, D.i] for ni 
odd  and [D. , ,  D.,.q,] for ni even. In addit ion,  the ro ta t ion  angle of  the 
return m a p  Ri in [D  i , D + ]  is 

and the ro ta t ion  n u m b e r  is 

Oi = 0,,,.q, = 6,,, (A.33) 

( - -  1 ) " ( , ,  
(A.34) vi = i -- q~. ,  
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First it is useful to check that  (A.33) implies (A.34). According to the 
definition of D,,, there exists an integer m posit ive or zero such that  
P , -  2i l = 0 for 0 ~< i <  m and p ,  2m- 1 :~ 0 ;  then p , _  2~ 2 = a , _  2i 1 for 
0 ~< i < m - 1. The  length of the interval  of definition for the return m a p  R, 
is then 

L , = ( - 1 ) ~ ( D . , p - D . )  

= ( - 1 ) "  6n 2m-l+p6n+ ~ an-2, 16n 2i-2 (A.35) 
i = 0  

Using the identi ty ai+ ~ 6i = 3i+ 1 - 6i_ 1, we find 

Li = ( -  1)he-1 (6n,_ 1 + Pi3ni) (A.36) 

which yields (A.34) for v i = Oi/Li by using (3.8) and (3.10). 
We now prove  recursively the main  result. For  i =  0, n = p  = 0, this 

assert ion is exact. R 0 is the initial ro ta t ion  on the unit circle. We have 
Do,o = 0, D O = 1, and 00, 0 = ~ = 3o. 

Let  us assume now that  at order  i the return m a p  R~ is defined on an 
interval [D..p,, D~,] and is a ro ta t ion  with angle 0~= 6.,. We prov  e that  
the next re turn map,  which is defined by the recursion procedure  described 
above,  is indeed a ro ta t ion  on the next interval defined by [D.i+~,q~+~, D. , ]  
with the expected angle 0.~+l. 

Fo r  sake of simplicity, we omi t  the index i of ni. We also assume that  
n is even, but  the same proofs  hold by symmet ry  for n odd. We consider 
separately three possible cases: (1) p < p .  - 1, (2) p = p .  - 1 and p~ + 1 # 0, 
and (3) p = p ~ -  1 and Po+I  = 0 .  

Case I. p < p .  - 1. Since 0n = 6. ,  the image of bo th  interval  edges is 
D.,p+b~=D.,p+l.  Consider ing that  n is even, the condi t ion p +  l < p ~  
implies (A.31), 

D~,p < Dn, p + O~= Dn, p+ 1 < A  < D .  (A.37) 

Therefore,  the return m a p  R~+I on the interval [D. ,p  +1, D~] that  contains  
A is defined by a first-kind recursion t ransformat ion.  Since p + 2 ~< p . ,  we 
also have 

D,,p < Dn ,  p+  2 -.~ D,,p + 20~ < Dn (A.38) 

which implies that  the ro ta t ion  number  of the return m a p  Ri is smaller 
than 1/2. Therefore,  the ro ta t ion  angle of  R~+I given by (A.21) is the same 
0~+~ = 0~=6~. The recursion condi t ion for the return m a p  R~+I is then 
proven.  

822/51/5-6-22 
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Case 2. P = P n -  1 and Pn+ 1 ~ 0. The image of both interval edges 
by the return map Ri is Dn, p --F O n ~ Dn + 1,o. Then (A.31) implies 

D~+I -=Dn, p<A <Dn, p+On=Dn+l,o<D~ (A.39) 

The new return map is now defined on the interval [Dn+ 1, Dn+ 1,0] next in 
the sequence to the interval IOn, p, Dn] and is a rotation. The rotation 
number of the return map Ri+l  is given by the second-kind recursion 
transformation (A.25) and is 

vi+ ~ = 1 - Frac ( ~ P ~ )  = 1 - ~n+ l=  F r a c ( - ~ n + l )  (A.40) 

The new return map Ri+~ fulfills the recursion condition (A.34). 

Case ,3. P = Pn - 1 and p , +  ~ = 0. Then we have p = Pn - 1 -= an+ 1 - 1 
and Pn+2 4 = 0. The image of both interval edges by the return map R~ is 
Dn, p + 6n = Dn+2,o and (A.31) implies 

Dn+l =D~,p<D,,,p+O~=D~+2,o<A <D~ (A.41) 

The new return map R~+~ is defined on the interval [D,+2,0, Dn] next in 
the sequence to the interval IOn, p, On] and is a rotation. The rotation 
number of the return map Ri+l  is given by the first-kind recursion trans- 
formation (A.21). We have 

~, 1 
(A.42) 

v~= 1 - - ( a n + ~ -  1 ) { . =  1 +~ .+1  

and 

Yi+ 1 = Frac = {.+2 (A.43) 

Again, the new return map Ri+l fulfills the recursion condition (A.34). 
Now let us discuss the possibility of finding the sequence of best 

approximations to A according to Definition 1. Clearly, it is a subsequence 
of the sequence Dn, p of best approximations by upper and by lower values. 
Unfortunately, it is impossible to determine this sequence. We get the 
following negative results, which sharply contrast with the well-known case 
where ,A = 0. 

T h e o r e m  2. Suppose that we know the coefficients of the ~ expan- 
sion (A.10) of A up to some finite order N. Then the minimum value of N 
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that allows one to decide with certainty whether a given number Dn, p in 
this expansion is a best approximation to A or not is not bounded. 

As a consequence of this theorem, it is impossible to give a recursive 
procedure involving only A through a finite number of terms of the sequence 
On, p that determines unambiguously the subsequence of On, p that forms 
the best approximations to A. However, there exist sufficient (but non- 
necessary) conditions involving finitely many terms that allow one to 
decide whether D,,,p is a best approximation to d or not. 

,Proof of Theorem 2. The knowledge of the (~ expansion (A.10) of A 
up to order N determines the sequence Dn, p for n ~< N. In order to prove 
this theorem, it is sufficient to show an example in which this deter- 
mination is impossible. Suppose that for some n, p we have 

tzl - (Dn, p + D,)/2)I < e (A.44) 

where e is smaller than the lower bound of [D,, p , -  (D,,p + D,)/2[ for all n' 
and 0 ~< p' < p,, with n' ~< N. Then, because of (A.7)~-(A.9), for all d '  in the 
interval determined by (A.44) the ( expansion is the same as for d up to 
order N. However, for 

0 < A ' -  (D,,p + Dn)/2 < e (A.45) 

Dn, p= Sn, p ~ - R n ,  p is a best approximation to A' because, due to (A.28), 
(A.31), there exists no Dn, p, with n'<n,  or n=n '  and p < p ' ,  that belongs 
to the interval generated by D,  and Dn, p. By contrast, in the interval 

0 < (On, p + D,)/2 - A' < e (A.46) 

D,,,p c a n n o t  be a best approximation to A' (according to Definition 1) 
because 

I D , - A ' [ < [ D , , p - A ' I  with D , = S , ~ - R ~  and S , < S , , p  (A.47) 

To determine whether Dn, p is a best approximation or not, one needs to 
know the coefficients of the {expansion of A up to an order N'  that 
diverges as e goes to zero. 

To be complete, we mention that an expansion similar to Eq. (A.10) 
was introduced in ref. 18 (see also ref. 8). 

APPENDIX  B. CONVERGENCE PROPERTIES OF THE 
SEQUENCE x F  n (mod 1 ) 

We determine the values of the real number x such that the sequence 

J(n=xF,  (mod 1) (B.1) 
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converges to a limit, or a limit-cycle, as n ~ oo. Here Fn denote the 
Fibonacci numbers, introduced in Section 2, and defined by Eq. (3.43): 

F , = F n  I + F ,  2 ( F 0 = 0 ; F I = I )  (B.2) 

We consider first the simpler case, where the sequence Xn has a limit: 

lim Xn = l (B.3) 
n ~ o o  

The recursion (B.2) then implies l = l + l (mod. 1 ), and hence l = 0 (mod 1 ). 
Introduce now the decomposition 

xFn  = aN + an (B.4) 

where a,, is the nearest integer to x F , .  Hence lenl ~< 1/2, and limn ~ ~ en = 0. 
The recursion (B.2) now implies 

a n + z - - a n +  1 - - a n = S n +  1 "~ en - -~n+  2 (B.5) 

The lhs of this equation is an integer, while the rhs converges to zero. 
Hence, both sides vanish identically for n larger than some N: 

a , + 2 = a , + , + a  . ( n > ~ N )  (B.6) 

It is then easy to show recursively that 

a u + n - ~ F n a N + l ' + F n  l a N  (n>~O) (B.7) 

The definition (B.4) now implies 

XFN+ n = FnaN+ 1 .31- Fn _ 1 aN -t'- eU+ n (B.8) 

We recall here that the Fn are related to the golden mean, defined in 
Eq. (1.1) 

= (x/5 + 1)/2 (B.9) 

by 

Conversely, 

F,, = ')n-I (B.IO) 

~ = F ~ + F ~  1 (B. t l )  
~=(-)~ (F~+,-zF~) 



Scaling Properties of an Intermediate Structure 1071 

By dividing both sides of Eq. (B.8) by FN+n, taking the n ~ oo limit, and 
using Eq. (B.10), we obtain 

X = a N + I . C - - N ~ _ a N T - - N  1 (B.12) 

Hence, Eq. (B.11) shows that x has the form 

x = j + k v  j, k integers (B.13) 

Conversely, for x given by Eq. (B.13), Eq. (B.11) yields X , = k ( - )  "+l r -" 
(rood 1). This sequence obviously converges to zero. 

We consider now the general case, where the sequence X, has a limit- 
cycle of length #. This means that the following limit exists: 

l i m  X~.+p=lp (p>~O) ( B . 1 4 )  
n ~ o o  

These numbers clearly obey the recursion 

as well as the periodicity 

lp=lp_l +lp_2 (mod 1) (B.15) 

Hence the lp can be shown to obey the following equation, analogous to 
Eq. (B.7): 

lp ~. Fp[l ~- Fp_ l l 0 ( B . 1 7 )  

Equation (B.16), taken for p = 0 and p = 1, implies the existence of integers 
(M, N) such that 

l u = f / j  l 1 -~- F u _  1 lo  = lo + M 

= + , t ,  + F lo = + N  
(B.18) 

In order to solve Eq. (B.18), we are led to define 6 as being the greatest 
common divisor of F ,  and (F ,_  1 - 1 ), 

= G C D ( F , ;  F,_~ - 1) (B.19) 

and to introduce the integers A, B such that 

F ,  = AS; F~ L = 1 + B3 (B.20) 

lp+, = lp (mod 1) (B.16) 
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Then Eqs. (B.18) read 
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Al I + Bl o = M/6 

(A + B) ll + Alo = N/6 
(B.21) 

Let now D denote the determinant of these coupled linear equations, 

D = A 2 - - A B - B 2 > O  (B.22) 

It follows that /o,  ll, and all the lp are integer multiples of liD& Hence the 
sequence Y, = D 6 x F ,  (rood 1) converges to zero. The first part of this 
Appendix implies that x has the form 

j + k r  
x =  D--~ (B.23) 

It turns out that, in contrast to what occurred with the x of the form (B.13) 
in the case of a fixed point (# = 1), there are restrictions on the values o f j  
and k, for some values of/~. For x given by Eq. (B.23), Eq. (B.11) yields 

1 
X , = - ~ [ j F n + k F ~ + , + k ( - ) ~ + ~ z  "] ( m o d l )  (B.24) 

Hence the sequence X, has a limit cycle of length # if and only if the quan- 
tities Z~ defined by 

j(Fn+F, -- F~) + k(F~+,+ , - F . +  ~) = Z .D6  (B.25) 

are integers for large enough n. In analogy with Eqs. (B.7), (B.17), it can be 
shown that 

1F. (B.26) 

Hence, Eq. (B.25) is equivalent to 

Fn(Bj + Ak) + Fn+ ~(Aj + (A + B) k ) =  Z , D  (B.27) 

with the notation (B.20). The Zn therefore obey the recursion 
Zn = Zn_ ~ + Z ,  2, and all of them are integers if and only if Zo --- J and 
Z~ = K are integers. We are left with the coupled equations 

Aj + (A + B ) k =  DJ 
(B.28) 

Bj + Ak = DK 
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which have for solution 

j = J A  - K ( A  + B ) ,  k = K A  - J B  (B.29) 

In summary, the sequence Xn defined in Eq. (B.1) has a limit cycle of 
length # if and only if x is of the form (B.23), wi th j  and k given by (B.29), 
where J and K are arbitrary integers. In other words, these values of x are 
the linear combinations, with integer coefficients J and K, of the numbers 

A - Bz A r -  A - B 
x l =  Dfi ' x z =  D6 (B.30) 

This set of values of x is called the Z-module generated by x I and x z .  If 
D = 1, all numbers of the form (B.23) are in this module, since Eq. (B.28) is 
obeyed for all j and k. If D ~> 2, then ( j  = 1, k = 0) clearly does not obey 
Eq. (B.28) (otherwise A and B would have the common divisor D), and 
hence the Z-module defined above is only a subset of the numbers given in 
Eq. (B.23). 

Moreover, it is worth noticing that the above-defined numbers xl and 
x2 obey 

Xl=rX2,  x z =  ~L r ~" (B.31)  
n ~ l  

Therefore it can be checked that any number x of the form 

x =  ~ a n t - "  ( c rn=0or  1) (B.32) 
n~>l 

where the a ,  are eventually periodic with period #(a~+~=a, ,  for n > ~ N )  

belongs to the Z-module generated by xl and xz. It can be shown that the 
converse is true. Thus, we have obtained another characterization of the 
module. 

In Section 3, we need in particular the values of x that yield a limit 
cycle of length 6 or 12. If # = 6, 6 = 4, and D = 1, then x is of the form 

I~ = 6 ~ x = ( j  + k r ) / 4  (B.33) 

If # = 12, c5 = 8, and D = 5, then x belongs to the module generated by 

xl = (18 - 1 lr)/40, x2 = ( 1 8 r -  29)/40 (B.34) 

An equivalent but simpler basis reads 

x--S = (2 + r)/40, x--S = (3 - T)/40 (B.35) 
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It is also easy to prove the following reciprocal property. For  any number 
x of the form 

x = ( j  + kz ) / v  (B.36) 

the sequence Xn of Eq. (B.1) converges to a limit /t-cycle, with #<~v 2. 
Indeed, for x given by Eq. (B.36), we have 

1 
X n = - [ j F , + k F , , + l + k ( - ) n + l z  - h I  ( m o d l )  (B.37) 

v 

Now let 2 n be the integers defined by 

j F , , + k F , , + I = 2 ,  (mod v); 0 ~<2 ,~<v -1  (B.38) 

This sequence obeys 

An--2  . 1 + 2 , _ 2  ( A n _ l + A n _ 2 < ~ v - 1 )  

~-A n 1 "~- An 2 - - V  (A n 1 + A . _ 2 ~ > V )  (B.39) 

This last equation defines a map I: of the finite set S = {0 ..... v - 1 }2 onto 
itself by (A,, 2, 1) = ~:(A,_ 1,2,_z) .  Since S has v 2 elements, every point of 
S is eventually periodic under D:, with a period #~<v 2. Then Eq. (B.37) 
implies that X, converges to a cycle of length #. 
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